
>: Hands On Tutorial//

HOT 06 v1.0 Page 1 of 29

DK 1.1 New Features

Hands On Tutorial Manual

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 2 of 29

>: 1 Introduction

This tutorial uses a simple bubblesort algorithm to demonstrate the new features in version 1.1 of Celoxica�s
DK design suite.

>: 2 Requirements

DK 1.1 must be installed on your computer. By default, the program files are installed in the directory
C:\Program Files\Celoxica\DK1. If these files have not been installed follow the setup procedures in the DK 1.1
installation guide.

>: 3 Topics
• Basics

o Setting up a workspace and project

o Creating source files in a project

• Bubblesort in software

o Setting up custom build steps

o Calls to external C/C++ functions

o Inline use of C/C++ library functions

• Bubblesort in hardware

o Porting: required changes to the code

• Handling non-standard data widths in C++

o Setting up software to use the Wide Number Library

o Non-standard types for C++ parameters and variables

o Casting from a C++ type to a Handel-C data type

o Converting a Handel-C data type to a C++ type

• Generation of automated functional testbenches

• Using the Technology Mapper

o What difference does it make?

• Using the DK 1.1 Estimation Tool

o Further modifications to Handel-C bubblesort

o Enabling the Estimation Tool, and viewing its output

o Using the Estimation Tool with the Mapper

o Using the Estimation Tool output

• Optimising the bubblesort algorithm using the Estimation Tool

o Reducing area

o Increasing delay

o Area/delay/performance tradeoffs

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 3 of 29

>: 4 DK 1.1 Basics

4.1 Setting up Workspaces and Projects

Workspaces are created in the same way as for DK1, by selecting New from the File menu, selecting the
Workspace tab, and entering a name and location for the workspace.

Projects can then be created within the Workspace, by selecting New from the File menu, selecting the
Project tab, and entering a project type and name. Note that the range of project types is expanded,
compared to DK1, including new devices from Altera and Xilinx, and a range of Actel devices.

4.2 Creating source files in a Project

When creating a new source file in DK1, the only options were Handel-C Source and Handel-C Header. These
options are now are now extended to include C/C++ source files, and the default filename extensions are
changed, as summarised in Table 1, which also includes the new defaults for object and library files.

When creating a new source file, select the type of file to be created, and enter a name with no extension, as
shown in Figure 1. In this way, DK 1.1 will set the extension to the required type, avoiding any confusion
between Handel-C and ANSI C/C++ source files. Existing Handel-C files with a .c extension can be added as
Handel-C source, but it will make projects easier to maintain if they are renamed to use the new extensions.

File Type Extension

Text File .txt

ANSI C Source File .c

ANSI C++ Source File .cpp

ANSI C/C++ Header File .h

Handel-C Source File .hcc

Handel-C Header File .hch

Handel-C Object File .hco

Handel-C Library File .hcl

Table 1. New filename extensions

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 4 of 29

>: 5 Bubblesort Tutorial

Bubblesort is a simple list-sorting algorithm, which repeatedly steps through a list, comparing elements with
each other and swapping them if necessary. This results in low values �falling� to the bottom of the list, and
high values �rising� to the top of the list, hence the name. This tutorial will begin by implementing a bubblesort
algorithm in software, and calling these software functions from Handel-C code. Inline calls to ANSI C functions
will also be used.

The bubblesort will then be ported to Handel-C, and ANSI C/C++ functions will be used to create functional
testbenches for it. The use of the Estimation Tool and Technology Mapper will then be illustrated through the
optimisation of the Handel-C bubblesort.

Select source
file type

Enter file name � no extension

Figure 1. Creating a source file

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 5 of 29

>: 6 Bubblesort in software

6.1 Getting started � creating the software source file

Create a new workspace called bubblesort, and inside it create a project named software_bubble, of type
Virtex-E. Make sure the Active Configuration is set to Debug. Within the project create an ANSI C++ file
called software_sort � remember the filename extensions will be set by DK 1.1 for you, in this case to .cpp.
In software_sort.cpp, we need to create three functions � to initialise, sort and display the list of items. The
code to do this is shown in Figure 2, from which you can copy it into the source file.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void sw_init_data(unsigned char *data, unsigned int n)
{

unsigned int i;

srand((unsigned)time(NULL));
for(i=0; i<n; i++)
{

data[i] = (unsigned char)(rand()%256);
printf("ARRAY[%d] = %d\n", i, data[i]);

}
}

void sw_print_data(unsigned char *data, unsigned int n)
{

unsigned int i;

for(i=0; i<n; i++)
{

printf("ARRAY[%d] = %d\n", i, data[i]);
}

}

void sw_sort_data(unsigned char *data, unsigned int n)
{

unsigned int i, j;
unsigned int temp;

for(i=0; i<n-1; i++)
{

for(j=i+1; j<n; j++)
{

if(data[i] < data[j])
{

temp = data[i];
data[i] = data[j];
data[j] = temp;

}
}

}
}

Figure 2. Software bubblesort functions

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 6 of 29

6.2 Getting started � setting up a Custom Build Step

DK 1.1 can not compile ANSI C/C++ internally � it uses an external compiler to do this; either Microsoft Visual
C++, Borland C++, or GCC. Therefore, in order to build a simulation which will incorporate ANSI C/C++ with
Handel-C, we must specify a Custom Build Step for every C/C++ source file.

Custom build steps are set up in the Project Settings dialog box, accessible from the Project menu.
However, the quickest way to access the custom build step for a specific C/C++ source file is to right-click on
the file in the workspace window, and select Settings, as shown in Figure 3.

Figure 3. Accessing file settings, for a Custom Build Step.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 7 of 29

A custom build step can issue any command, to run an external tool, copy files, etc. The most common use,
however, will be to compile a C/C++ source file for use in simulation, so this is what we will use as an
example. After open the settings for the C/++ source file, as described above, click on the Build Commands
tab, make sure that the View drop-down list is set to Commands, and click the button to create a new
command, as shown in Figure 4.

We can now enter the command required to use a backend C/C++ compiler to build the Source file for
simulation. If MS Visual C++ is being used, the command is:

The tool, cl in this case, could be replace with one of the other supported C/C++ compilers. The include path
must be set to wherever DK 1.1 is installed on your computer � this may be different from the example shown
above. In this example, we have used the $(InputName) macro to specify the source file. DK 1.1 will
substitute the name of the source file for this macro when it executes the command, but it will not substitute
an extension, which is why we have added .cpp after the macro. The /Fo setting for cl allows us to specify
where the output object file will be written. In this example, we have used another macro, $(TargetDir),
which will be substituted with Debug or Release, depending on which configuration is active. By using these
macros, we can now re-use this build command with any C++ source file. A similar command could be used for
C files, simply by changing the source extension from .c to .cpp.

Figure 4. Creating a new Build Command, for a custom build step.

New Command button

cl /I C:\Progra~1\Celoxica\DK1\Sim\Include /c $(InputName).cpp /Fo$(TargetDir)\$(InputName).obj

cl � backend
compiler

/I� - include
path

/c �.cpp �
source file

/o �.cpp � output
object file

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 8 of 29

Having specified a build command, we must also specify the output resulting from its execution, as DK 1.1 will
check the timestamp on this output to see if the build step needs to be executed. Still in the settings for the
C/C++ source file, select Outputs from the View drop-down list, and click the New button again. The output
should be the same as that specified in the actual build command, in this case:

 $(TargetDir)\$(InputName).obj

Again, we use the macro names so that the same output definition can be used for any C/C++ source file. Note
that you must specify an output for the build step, or it will nor be executed. DK 1.1 will warn you of this.

6.3 Calling external C/C++ functions from Handel-C

Having created a C++ source file, and specified a custom build step for it, we can now create a Handel-C
source file, and call the external C++ functions from it.

Click the New button (or select File->New), select Handel-C Source File, and enter the file name as main.
This will create a file called main.hcc, and add it to the project.

All Handel-C programs require a clock to be specified, so we add the line set clock = external; at the start
of main.hcc. As we are going to be calling the C++ functions in sotware_sort.cpp, we must declare them as
external functions in the Handel-C file, as shown below:

extern "C++"
{

void sw_init_data(unsigned char *data, unsigned int n);
void sw_print_data(unsigned char *data, unsigned int n);
void sw_sort_data(unsigned char *data, unsigned int n);

}

We also require a main() function, from which we will call the C++ functions, and an array of width char,
which will contain the list to be sorted, as shown below.

void main(void)
{

unsigned char data[8];

delay;
sw_init_data(&data[0], 8);
delay;
sw_sort_data(&data[0], 8);
delay;
sw_print_data(&data[0], 8);
delay;

}

The simulator will execute the C++ functions in zero clock cycles, so we insert single-cycle delay; statements
between the calls to the functions, to allow us to step through the code in the simulator and observe its
operation.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 9 of 29

6.3.1 Linking in C/C++ modules

Before we can build the project for simulation, we must tell DK 1.1 where to find the C/C++ modules to link in
with the Handel-C code. Open the Project Settings and select the Linker tab. The relative path of the object
file(s) produced by the custom build step(s) must be added to the Additional C / C++ Modules box. In this
case, there is only one object file � enter its path as shown in Figure 5. You can click the Browse button to
help you locate the object file(s).

Now we have created C++ and Handel-C source files, set up a custom build step for the C++ source, linked in
the C++ object file, and made calls from the Handel-C code to the C++. Click the Build button, or select
Build->Rebuild All, and the project will be built for simulation. The output window should display similar
results to those in Figure 6.

Figure 5. Specifying C/C++ modules for the Linker to use.

Browse button
Relative path to

C/C++ object file(s)

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 10 of 29

6.3.2 Simulating the Bubblesort

Now the bubblesort project has been successfully built, we can run it in the simulator. Start the simulator
either by clicking the Step Into button, selecting Step Into from the Build->Debug menu, or pressing the
F11 key. Make sure the Clocks/Threads and Variables windows are displayed (select them from the menu:
View->Debug Windows), and the Locals tab in the Variables window is selected. Expand the data array in
the Variables window, as shown in Figure 7.

Step through the simulation, one cycle at a time (press F11 to do this). The calls to the C++ functions will be
executed in zero clock cycles, and the simulator will only stop on the delay; statements. Each time the
simulator stops, you will see the contents of the data array change in the Variables window. The
sw_init_data() function uses a random number generator to initialise the array, so the contents of data will
be different each time the simulation is executed. After stepping past the call to sw_init_data(), the Variables
window should look similar to Figure 8, and after the call to sw_sort_data(), similar to Figure 9. It can be
seen that the C++ functions have randomly initialised the array, and then sorted its contents in descending
order.

Figure 6. Build output, for main.hcc and software_sort.cpp

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 11 of 29

Figure 7. Debug Simulation of software bubblesort

Figure 9. Array after call to
sw_sort_data() for bubblesort.

Figure 8. Array after call to
sw_init_data() for initialisation.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 12 of 29

6.3.3 Inline calls to C/C++ library functions

Start the software_bubble project in simulation again. Note that when the simulator starts, a command
window appears, in which standard I/O from the simulation is displayed. Step the simulator until the
sw_init_data() function has been executed, and switch to the command window, which should look similar to
Figure 10.

The output being displayed in Figure 10 is generated by the C++ functions we have called. It is also possible to
use standard C functions like printf() directly in the Handel-C code, if we declare these functions as extern
“C” in the Handel-C file from which they are called. A single function, printf() for example, can be declared as
shown below:

extern "C" int printf(char *fmt, ...);

Alternatively, it is possible to include an entire library:

extern "C"
{
#define __cdecl
#include <stdio.h>
}

Try using the first method in the software_bubble project, declaring printf() on its own, and add some calls
to it to provide more information during simulation, e.g.

printf("\nInitialising array\n\n");
sw_init_data(&data[0], 8);

delay;

printf("Sorting array...\n");
sw_sort_data(&data[0], 8);
printf("Sorting complete\n");

Figure 10. Standard I/O output from bubblesort

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 13 of 29

>: 7 Bubblesort in hardware

Create a new project in the bubblesort workspace, called hardware_bubble, selecting the chip type to be
Virtex-E. Open Explorer, and copy the files main.hcc and software_sort.cpp from the software_bubble
project folder into the hardware_bubble folder. In DK 1.1, right-click on the hardware_bubble project, and
select Add Files to Folder, as shown in Figure 11. Select the filter to Handel-C Files, and add main.hcc.
Select Add Files to Folder again, and this time set the filter to ANSI C / C++ Files, and add
software_sort.cpp to the project. Make sure that you are adding files from the correct folder, i.e.
hardware_bubble, not software_bubble!

Before going any further, we need to set up the custom build step again for software_sort.cpp. This can be
done easily by copying and pasting the settings from the file in the software_bubble project into this one.
Don�t forget to add the object file in the Linker tab for the project as well.

Figure 11. Adding files to a project.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 14 of 29

7.1 Porting the bubblesort to hardware

Create a new Handel-C file in the hardware_bubble project, called it hardware_sort. In the New File dialog
box, be careful to specify the folder where the file will be created, as shown in Figure 12. In this case, it should
be in the hardware_bubble folder.

Copy the sw_sort_data() function from software_sort.cpp, and paste it into hardware_sort.hcc, renaming
it to hw_sort_data(). In hw_sort_data(), there is an if() statement without an else case, which is not good
practice in Handel-C, so the code should be modified as shown below:

void hw_sort_data(unsigned char *data, unsigned int n)
{

unsigned int i, j;
unsigned int temp;
for(i=0; i<n-1; i++)
{

for(j=i+1; j<n; j++)
{

if(data[i] < data[j])
{

temp = data[i];
data[i] = data[j];
data[j] = temp;

}
else

delay;
}

}
}

Figure 12. Adding a new source file � check specified Location

Check the Location
is correctly set

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 15 of 29

Before we can call the hw_sort_data() function from our Handel-C program, we must declare it as an external
function in main.hcc, as shown below:

extern void hw_sort_data(unsigned char *data, unsigned int n);

Then, we can replace the call to sw_sort_data() with a call to hw_sort_data(). Note that we now need to
cast the length of the list to a specific bit-width, to allow DK 1.1 to infer the widths of other variables in the
hw_sort_data() function, as shown below:

hw_sort_data(&data[0], (unsigned 4)8);

The project can now be compiled for debug and executed as before. You may find it useful to set breakpoints
on the delay; statements before and after the call to hw_sort_data(), and view the simulation output in the
command window.

>: 8 Handling non-standard data widths in C++

Create a new project in the bubblesort workspace, called bubble_wide, selecting the chip type to be Virtex-E.
Open Explorer, and copy the files main.hcc, hardware_sort.hcc and software_sort.cpp from the
hardware_bubble project folder into the bubble_wide folder. In DK 1.1, right-click on the bubble_wide
project, and select Add Files to Folder. Select the filter to Handel-C Files, and add main.hcc and
hardware_sort.hcc. Select Add Files to Folder again, and this time set the filter to ANSI C / C++ Files, and
add software_sort.cpp to the project. Make sure that you are adding files from the correct folder, i.e.
bubble_wide. Set up the custom build step for software_sort.cpp.

The first two versions of the bubblesort have used 8-bit wide data (type char), which is a standard C++ data
type. We will now change the Handel-C code to use data of a different width, and modify the C++ code to
handle this. Open hardware_sort.hcc in the bubble_wide project, and change the type for the pointer to
data from char to 12-bit:

void hw_sort_data(unsigned 12 *data, unsigned int n)
{
...

Open main.hcc, change the type of the data array to 12-bit, and also update the extern prototype for
hw_sort_data() to reflect the change from char to 12-bit data. We are now ready to modify the C++ code to
handle the 12-bit data being used by the Handel-C code.

8.1 Setting up software to use the Wide Number Library

Support for non-standard data widths in C++ is provided through the Wide Number Library, which is supplied
with DK 1.1. Extensive documentation on the library can be found in the on-line help, but in this tutorial we will
cover just a few examples of its use.

To set up a C++ file to use the Wide Number Library, we must add the following lines of code at the head of
the file (in this case, to software_sort.cpp):

#include <hcnum.h>
using namespace HCNum;

The file hcnum.h is located in the include directory in the DK 1.1 installation. We specified this as an include
directory in the custom build step for the C++ file. Having added these lines of code, we can now proceed to
use the library to support non-standard data widths.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 16 of 29

8.2 Non-standard types for C++ parameters and variables

The first task in modifying the C++ code to handle non-standard data widths is to change the types of the
function parameters and any variables which will be used. The Wide Number Library provides two classes,
called Int and UInt, which can be used to declare variables and parameters of any width, e.g.

Int<3> Temp1; //declare a variable Temp1, type 3-bit signed
UInt<12> Temp2; //declare a variable Temp2, type 12-bit unsigned

So, we must modify the functions in software_sort.cpp to handle unsigned 12-bit parameters, as that is what
we have used in the Handel-C code:

void sw_init_data(UInt<12> *data, unsigned int n)
{
...

The prototypes in main.hcc must be updated accordingly, but can not use the Int and UInt classes, as they
are only for C++ code, and not for Handel-C. So, the prototypes for the modified C++ functions appear as
shown below:

extern "C++"
{

void sw_init_data(unsigned 12 *data, unsigned int n);
void sw_print_data(unsigned 12 *data, unsigned int n);
void sw_sort_data(unsigned 12 *data, unsigned int n);

}

Variables of type UInt or Int can also be declared and used in C++ code. All normal arithmetic operators are
overloaded to handle the classes, so most code can remain unmodified. The only required modification in the
C++ code for this tutorial is the type of the temp variable in sw_sort_data(), which must be changed to:

UInt<12> temp;

8.3 Casting from a C++ type to a Handel-C data type

Having changed the types of the C++ function parameters, we must now cast data to the correct type inside
these functions. The only function in software_sort.cpp which requires this modification is sw_init_data(),
which requires the line:

data[i] = (unsigned char)(rand()%256);

To be changed to:

data[i] = (UInt<12>)(rand()%4096);

Note that we have also changed the modulus expression, as an unsigned 12-bit number can hold values up to
4096, compared to 256 for the unsigned char.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 17 of 29

8.4 Converting a Handel-C data type to a C++ type

The Wide Number Library provides four methods to convert from a Handel-C data type to a C++ data type,
allowing for conversion to signed and unsigned integers, of 32 or 64-bit width. In this tutorial we are only using
the method to convert to convert to an unsigned 32-bit integer. For more detail on the other methods, and the
range of other functions which are supported, refer to the on-line help.

The only cases in our bubblesort C++ functions which need conversion of this type are where a value from the
data array is used as a parameter in printf(). We must change the line:

printf("ARRAY[%d] = %d\n", i, data[i].);

to:

printf("ARRAY[%d] = %d\n", i, data[i].UIntOf());

thereby using UintOf() to convert form the 12-bit unsigned data into a 32-bit unsigned integer, which can
then be handled correctly by the printf() function.

The project can now be compiled for Debug and simulated. The output in the command window can be seen to
relate to unsigned 12-bit data, rather than the 8-bit data in use previously.

>: 9 Generation of automated functional testbenches

The current version of the bubblesort project simply displays the sorted data in the command window, allowing
the user to visually inspect that the operation was correct. However, in many applications this will not be
possible. We will now create an automated testbench to prove the functionality of the Handel-C code,
compared to the C++ version.

Create a new project in the bubblesort workspace, called bubble_testbench, selecting the chip type to be
Virtex-E. Open Explorer, and copy the files main.hcc, hardware_sort.hcc and software_sort.cpp from the
hardware_bubble project folder into the bubble_testbench folder. Do not use the files from the
bubble_wide project. In DK 1.1, right-click on the bubble_testbench project, and select Add Files to
Folder. Select the filter to Handel-C Files, and add main.hcc and hardware_sort.hcc. Select Add Files to
Folder again, and this time set the filter to ANSI C / C++ Files, and add software_sort.cpp to the project.
Make sure that you are adding files from the correct folder, i.e. bubble_testbench. Set up the custom build step
for software_sort.cpp.

Modify the main.hcc file to contain 2 copies of the data array, and after initialising one, copy its contents into
the other, and then call both the Handel-C and C++ bubblesort functions, passing the copy of data into the
C++ version:

unsigned char data[8], data_copy[8];

sw_init_data(data, 8);

par(i=0;i<8;i++) // Copy the data from one array to the other
{

data_copy[i] = data[i];
}

hw_sort_data(data, (unsigned 4)8);
sw_sort_data(data_copy, 8);

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 18 of 29

Now we need to write a C++ function to compare the results of the two different bubblesort functions. This can
be put inside the software_sort.cpp source file. An example of how this could be written is shown below:

void sw_compare_data(unsigned char *data1, unsigned char *data2, unsigned int n)
{

unsigned int i;
unsigned int errors=0;

printf("\nComparing results...\n\n") ;
for(i=0;i<n;i++)
{

if(data1[i] != data2[i])
{

printf("error in array[%d] : ",i);
printf("Hardware = %d, Software = %d\n",data1[i],data2[i]);
errors++;

}
}

if(errors!=0)
printf("\n %d errors found.\n", errors);

else
printf("\nNo errors.\n");

}

Add this function to software_sort.cpp, an extern prototype in main.hcc, then call the function after
hw_sort_data() and sw_sort_data(), to compare the results of the two. If the Handel-C code has been
written correctly, the compare function should report no errors. Just to check that it does in fact detect errors,
try �breaking� the Handel-C code in hw_sort_data(), by changing some of the for() loop control parameters.
Remember that the data array is initialised randomly every time the simulation is executed, so there may
sometimes be no errors, even with the �broken� Handel-C code.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 19 of 29

>: 10 Using the Technology Mapper

DK 1.1 provides a Technology Mapper. This translates general logic circuits into device-specific logic blocks,
and can be used with EDIF output. The supported devices are:

• Xilinx: Virtex, VirtexE, VirtexII, VirtexII Pro, SpartanII
• Altera: Apex 20K, 20KE and 20KC, Apex II, Excalibur
• Actel: ProASIC and ProASIC+

All Place And Route (PAR) tools include a mapper, and this will be used when the DK 1.1 mapper is disabled,
which is the default for a new project. The mapper is enabled by setting the Active Configuration to EDIF, and
selecting the Linker tab in Project Settings, as shown in Figure 13. Then rebuild the project for EDIF.

10.1 What difference does the Mapper make?

The main reason for the Mapper�s inclusion in DK 1.1 is to improve the accuracy of the Estimation Tool, where
it provides more detail as to the hardware resources required by a design. It also allows estimates of the logic
delay of a design to be generated. The following section on the Estimation Tool will illustrate how it is affected
by the Mapper.

A side-effect of using the Mapper is that a design�s size and performance may change. This is because some of
the algorithms and optimisations used in the DK 1.1 Mapper are different to those used in FPGA vendors�
mappers. The user should enable the DK 1.1 Mapper during development of a design, to improve the
information in the Estimation Tool, and when the design is complete, they should test its size and performance
characteristics with and without the Mapper. The final result will depend on the nature of the design, and some
will be better with the DK 1.1 Mapper, others with the FPGA vendor�s mapper.

Figure 13. Enabling the Technology Mapper.

Check box to
enable the mapper

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 20 of 29

>: 11 Using the DK 1.1 Estimation Tool

DK 1.1 includes a new delay and area Estimation Tool, which allows the user to identify which portions of their
code are taking up more hardware resources, or incurring a higher logic delay. The Estimation Tool output is in
HTML format, and can be viewed using a standard web browser. In the following sections we will make some
basic improvements to the Handel-C bubblesort, and set it up for EDIF compilation, then illustrate the use of
the Estimation Tool with it.

11.1 Further modifications to Handel-C bubblesort

Create a new project in the bubblesort workspace, called hardware_bubble2, selecting the chip type to be
Virtex-E. Open Explorer, and copy the files main.hcc, hardware_sort.hcc and software_sort.cpp from the
hardware_bubble project folder into the hardware_bubble2 folder. In DK 1.1, right-click on the
hardware_bubble2 project, and select Add Files to Folder. Select the filter to Handel-C Files, and add
main.hcc and hardware_sort.hcc. Select Add Files to Folder again, and this time set the filter to ANSI C /
C++ Files, and add software_sort.cpp to the project. Make sure that you are adding files from the correct
folder, i.e. hardware_bubble2. Set up the custom build step for software_sort.cpp.

We will now modify the Handel-C bubblesort so it can be compiled successfully for EDIF, and also make some
basic optimisations to the code. First, we will modify the hw_sort_data() function. Functions are sometimes
less efficient in Handel-C than macro procedures, so we will convert hw_sort_data() to a macro proc, which
also allows us to parameterise it to accept arrays of any size and data width. We will also change the for()
loops into do…while(), as these are more efficient in Handel-C, and add some par{} statements. The modified
Handel-C bubblesort is shown below:

#include <stdlib.hch>
macro proc hw_sort_data(data, n)
{

macro expr AddrBits = (log2ceil(n));
static unsigned (AddrBits+1) i=0,j=1;
while(i < (n-1))
{

while(j < n)
{

par
{

if(data[i<-AddrBits] < data[j<-AddrBits])
{

par
{

data[j<-AddrBits] = data[i<-AddrBits];
data[i<-AddrBits] = data[j<-AddrBits];

}
}
else

delay;
j++;

}
}
par
{

i++;
j=i+2;

}
}

}

Note that we have included the Handel-C standard library header (stdlib.hch), so we must also add stdlib.hcl
into the Object/library modules box on the Linker tab of the Project Settings.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 21 of 29

In order to compile the Handel-C bubblesort for EDIF, we must create input and output interfaces, and use
them in the design. The following procedures copy data in and out of the array used by the bubblesort:

unsigned char Output;
interface bus_out() OutBus(Output);
interface bus_clock_in(unsigned char) InBus();

macro proc hw_init_data(data, n)
{

macro expr AddrBits = (log2ceil(n));
static unsigned (AddrBits+1) i=0;
do{

par
{

data[i<-AddrBits] = InBus.in;
i++;

}
}while(i < n);

}

macro proc hw_print_data(data, n)
{

macro expr AddrBits = (log2ceil(n));
static unsigned (AddrBits+1) i=0;
do{

par
{

Output = data[i<-AddrBits];
i++;

}
}while(i < n);

}

We must also modify main.hcc, as the C++ functions can not be included when compiling for EDIF. We can
use #ifdef statements to do this, as shown below:

set clock = external;
#ifdef SIMULATE
extern "C++"
{

void sw_init_data(unsigned char *data, unsigned int n);
void sw_print_data(unsigned char *data, unsigned int n);
void sw_sort_data(unsigned char *data, unsigned int n);

}
#endif

extern macro proc hw_sort_data(data, n);
extern macro proc hw_init_data(data, n);
extern macro proc hw_print_data(data, n);

void main(void)
{

unsigned char data[8];
#ifdef SIMULATE

sw_init_data(data, 8);
hw_sort_data(data, (unsigned 4)8);
sw_print_data(data, 8);

#else
hw_init_data(data, (unsigned 4)8);
hw_sort_data(data, (unsigned 4)8);
hw_print_data(data, (unsigned 4)8);

#endif
}

We can now set the Active Configuration to EDIF and rebuild the design. Do not worry about the warnings
concerning unconstrained pins, as we are not actually going to download this design into a physical device.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 22 of 29

11.2 Enabling the Estimation Tool, and viewing its output

The Estimation Tool is enabled on the Linker tab of Project Settings, as shown in Figure 14. If we now rebuild,
the Estimation Tool will generate estimation information for the design.

Figure 14. Enabling the Estimation Tool

Check box to enable
the Estimation Tool

Make sure Configuration
is set to EDIF

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 23 of 29

After rebuilding the design, open Explorer and browse into the EDIF directory, where you will see a file named
Summary.html, which contains a summary of the design, generated by the estimation tool. Figure 15 shows
the summary file, with explanations. The summary includes estimates of the area used by each file in the
project, and also the longest paths in terms of the number of logic levels. Clicking on the links will take you to
more detailed information.

Click links to go to
detailed area estimation

Figure 15. Estimation Tool summary file

Click link to go to
detailed delay estimation

Delay Summary,
in logic levels

Area Summary

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 24 of 29

Figure 16 shows part of the detailed area estimation for the hardware_sort.hcc file. The area usage from the
summary page is broken down to individual lines here, indicating how many NAND gates, FFs and memory bits
are used by each line of code. The colouring of the code indicates the distribution of these resources across
each line.

Figure 16. Detailed area estimation information.

Resources used by
this line of code

Colouring indicates
distribution of resources

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 25 of 29

Figure 17 shows the detailed delay estimation for the longest path from FF to FF. Clicking on the links in the
left panel of the page will cause the right panel to jump to the associated line of code. The left panel clearly
indicates how many logic levels are associated with each line of code, allowing the user to focus on the
�slowest� line of code first when optimising the design.

Figure 17. Detailed delay estimation information

Click links to jump to
line numbers

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 26 of 29

11.3 Using the Estimation Tool with the Mapper

If the DK 1.1 Technology Mapper is turned on, the Estimation Tool can produce more accurate information.
Figure 18 shows how the Summary Page appears when the Mapper is turned on. The area estimation still
includes FFs and memory bits, but the NAND gates have now been split into LUTs (Look-Up Tables) and other
components. The �other� section includes multiplexers, fast carry chains and other device-specific components.
The summary of the longest paths now describes them in terms of the delay in nanoseconds, rather than logic
levels. This is possible because the mapper has translated the design into specific components, for which the
logic delays are known in advance. Note that this estimate does not make any allowance for routing
delay, as this information is only available after PAR using the FPGA vendor�s tools. Reducing the logic delay of
a design will increase its performance, but the actual minimum clock period will always be higher than the
estimated path delay, after the routing delay has been taken account of.

The detailed area and delay information is also enhanced with the information from the Mapper, listing the
usage of hardware resources, and including the logic delay in nanoseconds per component in the longest paths.

Area Summary
after mapping

Estimated Logic
Delay after mapping

Figure 18. Estimation Summary, using Technology Mapper

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 27 of 29

11.4 Using the Estimation Tool output

Most users will be aiming to increase the performance of their design using the estimation tool. The procedure
to follow in this case is simple:

1. Set Active Configuration to EDIF. Enable the Technology Mapper and Estimation Tool.

2. Rebuild the project.

3. Open the estimation summary and click the link for the longest path info.

4. On the longest path, jump to the source code line or lines which have the largest number of
components associated with them.

5. Return to the Handel-C source in DK 1.1, and modify the line(s) of code identified by the
Estimation Tool.

6. Rebuild the project, and return to the estimation summary page, to see what the effect was.

The longest path will usually be from FFs to FFs, but the delays to and from the pins should be checked as well,
in case they are limiting the performance of the design. Typical optimisations which might be made, having
identified the offending lines of code, include:

• Changing comparison operators (>, <, >=, <=) to equality tests (==, !=).

• Pipelining a portion of code, by splitting a complex operation into 2 or more stages.

• Reducing the bit-width of variables used in loop control.

• Avoid variable indices for arrays where possible.

• Convert deeply nested if()…else statements to an alternative program structure.

• Register address and data for any RAM access.

Other users may wish to optimise the area of the design, thereby reducing the size of the device required to
implement it. The procedure is similar, expect this time the user should use the estimation summary to identify
which of the source files are contributing most to the area of the design, and focus on optimising these first.
Scrolling down the detailed area information for each source file will quickly reveal which lines of code are
contributing most to the design size. Many of the optimisations which are listed above for reducing the delay
will also reduce the area; some others apply specifically to area reduction:

• Moving arrays in RAM structures.

• Moving large distributed RAMs into Block RAM (Xilinx devices).

• Reducing the complexity of arithmetic, e.g. avoiding large multipliers.

After modifying the source code, rebuild the project to see what difference the changes made. In the following
section we will use the Estimation Tool with the bubblesort program.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 28 of 29

>: 12 Optimising bubblesort using the Estimation Tool

We will optimise the Handel-C bubblesort using the Estimation Tool. The focus will initially be on reducing the
area of the design, and then on reducing the delay on the longest paths. While doing this, we will attempt to
avoid reducing the overall performance too much.

Create a new project in the bubblesort workspace, called hardware_bubble3, selecting the chip type to be
Virtex-E. Open Explorer, and copy the files main.hcc, hardware_sort.hcc and software_sort.cpp from the
hardware_bubble2 project folder into the hardware_bubble3 folder. In DK 1.1, right-click on the
hardware_bubble3 project, and select Add Files to Folder. Select the filter to Handel-C Files, and add
main.hcc and hardware_sort.hcc. Select Add Files to Folder again, and this time set the filter to ANSI C /
C++ Files, and add software_sort.cpp to the project. Make sure that you are adding files from the correct
folder, i.e. hardware_bubble3. Set up the custom build step for software_sort.cpp.

By creating a new project, we can compare it to the previous version, to see what improvements in area and
delay we can achieve. The following sections are for you to attempt, using the information given so far.
Solutions will be made available later.

12.1 Reducing area

Build the project with the Technology Mapper and the Estimation Tool enabled, open the estimation summary
HTML file, and browse to the detailed area information for both of the source files. A quick glance over the
estimation information should reveal that the declaration of the data array and the accesses to it are
contributing most to the total area of the design. Try to reduce the area by storing the data in RAM instead.

Hints: A RAM can only be accessed once per clock cycle, so watch out for par{} statements. Remember to
register the data coming out of the RAM � don�t use it directly in an if() statement.

12.2 Reducing delay and increasing performance

By using a RAM to store the data to be sorted, the bubblesort will now take many more cycles to execute. This
can be reduced by using a multi-port RAM (mpram), with one read port and one read/write port. This will allow
some parallel accesses to be made to the RAM, reducing the number of cycles required to complete the
bubblesort. Try using a Block RAM to store the data, and see what difference this makes. Look for any
comparison operators in the bubblesort procedure, and replace them with inequality tests, to see if the delay
can be reduced.

Hints: Using a Block RAM for a small memory like this is wasteful, as an entire block will be used for only a
small amount of data, but try it anyway to see what the result is. When using a multi-port RAM, try and spread
the number of read accesses evenly across the two ports.

12.3 Area/delay/performance tradeoffs

In these recent sections you will have seen how the Estimation Tool can allow you to make more informed
decisions about the architecture and implementation of your design. In most cases the size and performance of
a design can be traded off against each other by making simple changes to the source code. Remember that
the information from the Estimation Tool does not take account of routing delays � if you have time, try
running a Place And Route on the last two bubblesort projects, to see what the actual results are. If you do
this, remember to add a rate specification to the clock definition in main.hcc, so the PAR tools have a target
clock rate to aim for.

>: Hands On Tutorial//

DK 1.1 New Features

HOT 06 v1.0 Page 29 of 29

>: 13 Further Information

For information on Celoxica products contact Sales@celoxica.com. Regional office locations are given below.

Customer Support at Support@celoxica.com and +44 (0)1344 663649.

Celoxica Ltd.

20 Park Gate

Milton Park

Abingdon

Oxfordshire OX14 4SH

United Kingdom

Tel: +44 (0) 1235 863 656

Fax: +44 (0) 1235 863 648

Celoxica, Inc

900 East Hamilton Avenue

Campbell, CA 95008

USA

Tel: +1 800 570 7004

Tel: +1 408 626 9070

Fax: +1 408 626 9079

Celoxica Japan KK

YBP West Tower 11F

134 Godo-cho, Hodogaya-ku

Yokohama 240-0005

Japan

Tel: +81 (0) 45 331 0218

Fax: +81 (0) 45 331 0433

Celoxica Pte Ltd

Unit #05-03

31 Int�l Business Park

Singapore

609921

Tel: (65) 6896 4838

Fax: (65) 6566 9213

Copyright © 2002 Celoxica Ltd. All rights reserved. Celoxica, the Celoxica logo and �cutting a LONG story SHORT�
are trademarks of Celoxica Ltd.

www.celoxica.com

mailto:Support@celoxica.com
http://www.celoxica.com/
mailto:Sales@celoxica.com

	Introduction
	Requirements
	Topics
	DK 1.1 Basics
	Setting up Workspaces and Projects
	Creating source files in a Project

	Bubblesort Tutorial
	Bubblesort in software
	Getting started – creating the software source file
	Getting started – setting up a Custom Build Step
	Calling external C/C++ functions from Handel-C
	Linking in C/C++ modules
	Simulating the Bubblesort
	Inline calls to C/C++ library functions

	Bubblesort in hardware
	Porting the bubblesort to hardware

	Handling non-standard data widths in C++
	Setting up software to use the Wide Number Library
	Non-standard types for C++ parameters and variables
	Casting from a C++ type to a Handel-C data type
	Converting a Handel-C data type to a C++ type

	Generation of automated functional testbenches
	Using the Technology Mapper
	What difference does the Mapper make?

	Using the DK 1.1 Estimation Tool
	Further modifications to Handel-C bubblesort
	Enabling the Estimation Tool, and viewing its output
	Using the Estimation Tool with the Mapper
	Using the Estimation Tool output

	Optimising bubblesort using the Estimation Tool
	Reducing area
	Reducing delay and increasing performance
	Area/delay/performance tradeoffs

	Further Information

